

[The TX2352 was originally introduced by Texas Components in 1997, and is available in all values from 1Ω to 10Ω and $100k\Omega$ to $250k\Omega$]

Ultra High Precision; Ultra Low Noise and Distortion; Ultra High Linearity

Tight Tolerance, Low Temperature Coefficient of Resistance (TCR), and Low Voltage Coefficient of Resistance (VCR)

Resistors made with Bulk Metal[®] Foil are known for their unique combination of unmatched performance in all 10 major technical areas:

Temperature Coefficient of Resistance (TCR) Power Coefficient of Resistance (PCR) Voltage Coefficient of Resistance (VCR) Thermal Electromotive Force (EMF) Electrostatic Discharge (ESD) Tolerance Thermal Stabilization Load Life Stability Response Time Noise

The TX2352 is made using Bulk Metal[®] Foil technology, providing improved sound quality and featuring a combination of low noise and low inductance/capacitance that makes it optimally suited for applications requiring quiet, distortion-free performance. Bulk Metal[®] Foil resistors like the TX2352, originally introduced to the market by Texas Components in 1997, are already widely acknowledged as the leading resistors for audio applications, and the special 'naked' design (without encapsulation) aids in reducing signal distortion and increasing both precision and clarity in signal processing. For non-standard technical requirements and special applications, our sales staff and applications engineers are available to advise you and make recommendations.

Characteristics of Different Types of Resistors										
Technology	Temperature Coefficient of Resistance (TCR) -55°C to +125°C, +25°C ref.	Initial Tolerance	End of Life Tolerance	Load Life Stability at +70℃, Rated Power at 2000 Hours and then at 10,000 Hours	ESD (V)	Thermal Stabilization	Noise (dB)			
Bulk Metal [®] (C/K) Foil	±2 ppm/°C; ±1 ppm/°C	From 0.001%	< 0.05%	0.005% (50 ppm) 0.01% (100 ppm)	25,000V	< 1 second	-42db			
Thin Film	±5 ppm/ °C	From 0.05%	< 0.4%	0.05% (500 ppm) 0.15% (1500 ppm)	2,500V	> minutes	-20db			
Thick Film	±50 ppm/ °C	From 0.5%	< 5%	0.5% (5000 ppm) 2% (20,000 ppm)	2,000V	> minutes	+20db			
Wirewound	±3 ppm/ °C	From 0.005%	< 0.5%	0.05% (500 ppm) 0.15% (1500 ppm)	25,000V	> minutes	-35db			

TX2352

'Naked' Bulk Metal[®] Foil Resistor

for Audio Applications

T2352 150K

USA Manufacturer of Precision Resistors featuring Bulk Metal[®] Foil*

CHALLENGES IN AUDIO APPLICATIONS

LINEARITY

Precision electronic equipment, including high-end audio equipment, will often suffer from noise effects due to tolerance stacking, circuit drift, and other instabilities. Constant adjustments, troubleshooting, and even costly compensation circuitry can prove ineffective in addressing these problems because the source of such noise and instabilities can often be traced to simple "fixed" resistors whose resistance values, in actual use, do not remain fixed. In addition, resistors can be direct sources of noise as well, depending on combinations of signal frequency, resistance value, current, temperature, applied voltage, and resistor type. Many experiments have been done to show why some resistors are "noisier" than others, but electronics experts and audiophiles agree that what really matters is the true level of fidelity experienced by the user when different resistor technologies are applied within audio system circuitry.

High-end audio applications require low intrinsic noise, highly linear amplification, and minimal dynamic distortion. The typical audio amplifier consists of a voltage preamplifier (preamp) and a power amplifier (final driver). The voltage preamplifier deals with low-level signals, so its intrinsic noise level is critical, while the power amplifier must have a high linearity of amplification with minimal dynamic distortion.

<u>NOISE</u>

Resistors can be one of the principal noise sources found in both preamplifiers and amplifiers. Several types of noise are found in and/or caused by resistors.

Thermal noise is caused by thermal agitation of the discrete charge carriers (electrons) within the resistive material. Thermal noise gets worse as resistance and temperature increase. Thermal noise is uniformly distributed throughout the audible frequency spectrum (as "white" noise).

<u>Shot noise</u> is caused by fluctuations in the flow or density of discrete charges carriers (electrons) along the circuit. Shot noise increases at high frequencies and as current and temperature decrease. Shot noise is uniformly distributed throughout the audible frequency spectrum (as "white" noise).

Flicker (aka current) noise is caused by fluctuations in resistance along the signal path, which is then transformed into voltage and/or current fluctuations - so it is highly dependent on the resistive material. Flicker noise increases as frequency decreases and current increases. The use of resistors with a higher power rating than is otherwise needed can help to reduce flicker noise. Flicker noise has a 1/f type spectral density of voltage (aka "pink" noise).

In addition to noise, every resistor possesses a certain nonlinearity of its electrical resistance and, therefore, a nonlinearity in voltage and current characteristics. The degree of nonlinearity depends on, among other factors, the internal microstructure of the resistive material, the quality and characteristics of calibration technique, and the quality of the contact between the resistive element and the terminals.

Regarding the microstructure of the resistive material, the most linear materials are pure metals and metal alloys in bulk, such as the foil in Bulk Metal[®] Foil resistors. Bulk Metal[®] Foil resistors are characterized by the exceptionally high intrinsic linearity of their resistive element. Bulk Metal[®] Foil resistors owe their high linearity, and ultra low current noise, to the type of material they're made of (which is a cold-rolled metal foil several microns thick). When the same materials are deposited in the form of very Thin (nanometer range) Films, they are less linear. And even less linear than Thin Film resistors, and the carbon compositions used in Carbon Composition resistors.

Regarding the other factors affecting linearity, the trimming of Bulk Metal[®] Foil resistors consists of cutting shorting bars/jumpers (which do not damage the remaining current carrying portions of the resistive element) and the terminals in Bulk Metal[®] Foil resistors are an integral part of the foil resistive element (insuring a high-quality contact between resistive element and terminals).

CONCLUSION

In summary, the factors that cause noise and nonlinearity in other types of resistors are either minimized or not even relevant to Bulk Metal[®] Foil based resistors. Carbon Composition resistors are the noisiest resistive device type, followed by Thick Film and then Thin Film resistors. The least noisy are bulk metals and metal alloys (Bulk Metal[®] Foil and Wirewound). But, among other problems, Wirewound resistors suffer from inherent inductance/capacitance that Bulk Metal[®] Foil resistors do not have - so the possibility, even probability, of self-excitation or "ringing" of the amplification circuit is reduced or eliminated when Bulk Metal[®] Foil resistors are used. Both noise and non-linearities are minimized by the inherent design and use of Bulk Metal[®] Foil resistors.

For high-end audio equipment, the careful selection of resistors is one of the best ways to avoid or minimize unwanted noise and distortion in the signal path, and Bulk Metal[®] Foil resistors, particularly the 'naked' versions (without encapsulation), are by far the best possible choice for low-noise, high-fidelity applications.

 $\pm 1.0\%$

TABLE 1 - TCR	BY RESISTANCE RANGE	TABLE 2 – AVAILABLE TOLERANCES BY RESISTANCE RANGE			
RESISTANCE VALUE (Ω)	TYPICAL TCR (& MAX SPREAD)	RESISTANCE VALUE (Ω)	AVAILABLE TOLERANCES (%)	CODE	
100kΩ-250kΩ*	± 2.0 (± 2.5) (ppm/°C)	50Ω-250kΩ	±0.005%	V	
80Ω-100kΩ	± 1.0 (± 2.5) (ppm/°C)	25Ω-250kΩ	±0.01%	Т	
50Ω-80Ω	± 1.0 (± 3.5) (ppm/°C)	12Ω-250kΩ	±0.02%	Q	
10Ω-50Ω	± 1.0 (± 4.5) (ppm/°C)	5Ω-250kΩ	±0.05%	A	
10-100	+ 2.2 (+ 6.0) (ppm/°C)	<mark>2Ω-250kΩ</mark>	±0.1% (recommended)**	B	
* Resistance values greater than $150k\Omega$ are available only by special request ** Values less than 2Ω are recommended at ±0.5%.		2Ω-250kΩ	±0.25%	С	
		1Ω-250kΩ	±0.5%	D	

F

1Ω-250kΩ

50 °

25 %

- 75

- 50 - 25 + 25

DIMENSIONS

Ambient Temperature (°C)

0

inches

W: 0.080 max

L: 0.250 max

H: 0.310 max

LL: 1.000 ± 0.125

LS**: 0.150 ± 0.005

+ 50 + 75 + 100 + 125 + 150 + 175 + 200

mm

W: 2.03 max

L: 6.35 max

H: 7.87 max

LL: 25.4 ± 3.18

LS**: 3.81 ± 0.13

Packaging

All TX2352

values are

provided in

Bulk Pack

(Code = B)

* Single chip values above 150kΩ (up to 250kΩ) are available only by special request. For values above 250kΩ, ask about our multi-chip models. ** By special order, a lead space option of 0.200" (5.08 mm) is also available.

AMBIENT POWER RATING

at + 70 °C

0.4 W rms

(0.6 W peak)

0.267 W rms

(0.4 W peak)

(If you need higher power ratings, ask about our

multi-chip models TX2352-2,3,4, etc.)

Soldered PCB

Lead Material #22 AWG

Round Solder Coated Copper

Ω

 1Ω up to

100kΩ

100kΩ to

250kΩ

MAX

WORKING

VOLTAGE

200 V (rms)

(300 V peak)

TABLE 4 – HOW TO ORDER THE CORRECT PART NUMBER

TABLE 3 - SPECIFICATIONS

at + 125 °C

0.2 W rms

(0.3 W peak)

0.133 W rms

(0.2 W peak)

	I	I	
MODEL	TERMINATIONS (FINISH)	RESISTANCE VALUE	TOLERANCE
TX2352	TIN/LEAD (Std) = Blank	TIN/LEAD (Std) = Blank 1Ω to $250k\Omega$	
	LEAD FREE = T	(R = Ω and K = k Ω) Always given as 6 characters	0.005% to 1.0%
A 20,001 ohm resistor with	lead free terminations and a 0.01%	tolerance would be ordered	as: TX2352 T 20K001 0.01%
A 15.3 ohm resistor with	h standard terminations and a 0.5%	tolerance would be ordered a	as: TX2352 15R300 0.5%

(Due to limited surface space, the TX2352 may be marked/printed as a T2352.)

[Note: The Vishay Precision Group (VPG) VAR (Vishay Audio Resistor) is a product application similar to the TX2352 that was developed and released to market by VPG based on the success of the TX2352 and, more recently, the TX2575. The VAR, made in Israel, can be obtained through Texas Components too through our distribution agreement with VPG - but the TX2352, TX2575, and other TX series audio resistors are manufactured by Texas Components at our facility in Texas and, therefore, are available with shorter lead times and with many more customized variations. Surface mount versions are also available from Texas Components.]

For more information about this subject or this product line, please contact us at resistorinfo@texascomponents.com. You can also "Follow" Texas Components and Bulk Metal® Foil Resistors on Twitter @TexasComponents and/or "Like" Texas Components on Facebook.

LEGAL DISCLAIMER: ALL PRODUCTS, PRODUCT SPECIFICATIONS, AND OTHER DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE AND TO CERTAIN DISCLAIMERS AND EXCLUSIONS. Please make sure to view the complete, and latest, product legal disclaimer at this link: TxCC Legal Disclaimer

Page 3 of 3

LL

LS

RESISTANCE

RANGE (Ω)

1Ω to 250kΩ*